LIPIcs.MFCS.2017.26.pdf
- Filesize: 464 kB
- 12 pages
We consider satisfiable Tseitin formulas TS_{G,c} based on d-regular expanders G with the absolute value of the second largest eigenvalue less than d/3. We prove that any nondeterministic read-once branching program (1-NBP) representing TS_{G,c} has size 2^{\Omega(n)}, where n is the number of vertices in G. It extends the recent result by Itsykson at el. [STACS 2017] from OBDD to 1-NBP. On the other hand it is easy to see that TS_{G,c} can be represented as a read-2 branching program (2-BP) of size O(n), as the negation of a nondeterministic read-once branching program (1-coNBP) of size O(n) and as a CNF formula of size O(n). Thus TS_{G,c} gives the best possible separations (up to a constant in the exponent) between 1-NBP and 2-BP, 1-NBP and 1-coNBP and between 1-NBP and CNF.
Feedback for Dagstuhl Publishing