Lossy Kernels for Hitting Subgraphs

Authors Eduard Eiben, Danny Hermelin, M. S. Ramanujan



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2017.67.pdf
  • Filesize: 0.55 MB
  • 14 pages

Document Identifiers

Author Details

Eduard Eiben
Danny Hermelin
M. S. Ramanujan

Cite As Get BibTex

Eduard Eiben, Danny Hermelin, and M. S. Ramanujan. Lossy Kernels for Hitting Subgraphs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 67:1-67:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.MFCS.2017.67

Abstract

In this paper, we study the Connected H-hitting Set and Dominating Set problems from the perspective of approximate kernelization, a framework recently introduced by Lokshtanov et al. [STOC 2017]. For the Connected H-hitting set problem, we obtain an \alpha-approximate kernel for every \alpha>1 and complement it with a lower bound for the natural weighted version. We then perform a refined analysis of the tradeoff between the approximation factor and kernel size for the Dominating Set problem on d-degenerate graphs and provide an interpolation of approximate kernels between the known d^2-approximate kernel of constant size and 1-approximate kernel of size k^{O(d^2)}.

Subject Classification

Keywords
  • parameterized algorithms
  • lossy kernelization
  • graph theory

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for dominating set. J. ACM, 51(3):363-384, 2004. Google Scholar
  2. Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica, 54(4):544-556, 2009. URL: http://dx.doi.org/10.1007/s00453-008-9204-0.
  3. Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1-44:69, 2016. Google Scholar
  4. Al Borchers and Ding-Zhu Du. The k-steiner ratio in graphs. In Frank Thomson Leighton and Allan Borodin, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 641-649. ACM, 1995. Google Scholar
  5. Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approximation via iterative randomized rounding. J. ACM, 60(1):6:1-6:33, 2013. Google Scholar
  6. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  7. Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866-893, 2005. Google Scholar
  8. Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its algorithmic applications. The Computer Journal, 51(3):292-302, 2008. Google Scholar
  9. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  10. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through colors and ids. ACM Transactions on Algorithms, 11(2):13:1-13:20, 2014. Google Scholar
  11. Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science &Business Media, 2012. Google Scholar
  12. Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and sparseness: the case of dominating set. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 31:1-31:14, 2016. Google Scholar
  13. S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1(3):195-207, 1971. Google Scholar
  14. P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, s1-35(1):85-90, 1960. Google Scholar
  15. Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM J. Comput., 36:281-309, 2006. Google Scholar
  16. Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Ondrej Suchý. Parameterized complexity of directed steiner tree on sparse graphs. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 671-682, 2013. Google Scholar
  17. Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS, 113, 2014. Google Scholar
  18. Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization-preprocessing with a guarantee. In The Multivariate Algorithmic Revolution and Beyond, pages 129-161. Springer, 2012. Google Scholar
  19. Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 224-237. ACM, 2017. Google Scholar
  20. Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms, 9(1):11:1-11:23, 2012. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail