In this paper, we study the Connected H-hitting Set and Dominating Set problems from the perspective of approximate kernelization, a framework recently introduced by Lokshtanov et al. [STOC 2017]. For the Connected H-hitting set problem, we obtain an \alpha-approximate kernel for every \alpha>1 and complement it with a lower bound for the natural weighted version. We then perform a refined analysis of the tradeoff between the approximation factor and kernel size for the Dominating Set problem on d-degenerate graphs and provide an interpolation of approximate kernels between the known d^2-approximate kernel of constant size and 1-approximate kernel of size k^{O(d^2)}.
@InProceedings{eiben_et_al:LIPIcs.MFCS.2017.67, author = {Eiben, Eduard and Hermelin, Danny and Ramanujan, M. S.}, title = {{Lossy Kernels for Hitting Subgraphs}}, booktitle = {42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)}, pages = {67:1--67:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-046-0}, ISSN = {1868-8969}, year = {2017}, volume = {83}, editor = {Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.67}, URN = {urn:nbn:de:0030-drops-80955}, doi = {10.4230/LIPIcs.MFCS.2017.67}, annote = {Keywords: parameterized algorithms, lossy kernelization, graph theory} }
Feedback for Dagstuhl Publishing