LIPIcs.MFCS.2017.28.pdf
- Filesize: 0.51 MB
- 15 pages
Let d be a positive integer. Can a given graph G be realized in R^d so that vertices are mapped to distinct points, two vertices being adjacent if and only if the corresponding points lie on a common line that is parallel to some axis? Graphs admitting such realizations have been studied in the literature for decades under different names. Peterson asked in [Discrete Appl. Math., 2003] about the complexity of the recognition problem. While the two-dimensional case corresponds to the class of line graphs of bipartite graphs and is well-understood, the complexity question has remained open for all higher dimensions. In this paper, we answer this question. We establish the NP-completeness of the recognition problem for any fixed dimension, even in the class of bipartite graphs. To do this, we strengthen a characterization of induced subgraphs of 3-dimensional Hamming graphs due to Klavžar and Peterin. We complement the hardness result by showing that for some important classes of perfect graphs –including chordal graphs and distance-hereditary graphs– the minimum dimension of the Euclidean space in which the graph can be realized, or the impossibility of doing so, can be determined in linear time.
Feedback for Dagstuhl Publishing