LIPIcs.ITCS.2017.42.pdf
- Filesize: 0.55 MB
- 13 pages
We consider the algorithmic problem of community detection in networks. Given an undirected friendship graph G, a subset S of vertices is an (a,b)-community if: * Every member of the community is friends with an (a)-fraction of the community; and * every non-member is friends with at most a (b)-fraction of the community. [Arora, Ge, Sachdeva, Schoenebeck 2012] gave a quasi-polynomial time algorithm for enumerating all the (a,b)-communities for any constants a>b. Here, we prove that, assuming the Exponential Time Hypothesis (ETH), quasi-polynomial time is in fact necessary - and even for a much weaker approximation desideratum. Namely, distinguishing between: * G contains an (1,o(1))-community; and * G does not contain a (b,b+o(1))-community for any b. We also prove that counting the number of (1,o(1))-communities requires quasi-polynomial time assuming the weaker #ETH.
Feedback for Dagstuhl Publishing