 Creative Commons Attribution 3.0 Unported license
                
    Creative Commons Attribution 3.0 Unported license
 
    We consider the following problem: Preprocess a set S of n axis-parallel boxes in \mathbb{R}^d so that given a query of an axis-parallel box Q in \mathbb{R}^d, the pairs of boxes of S whose intersection intersects the query box can be reported efficiently.  For the case that d=2, we present a data structure of size O(n\log n) supporting O(\log n+k) query time, where k is the size of the output. This improves the previously best known result by de Berg et al. which requires O(\log n\log^* n+ k\log n) query time using O(n\log n) space.There has been no known result for this problem for higher dimensions, except that for d=3, the best known data structure supports
O(\sqrt{n}+k\log^2\log^* n) query time using O(n\sqrt {n}\log n) space. For a constant d>2, we present a data structure supporting O(n^{1-\delta}\log^{d-1} n + k \polylog n) query time for any constant 1/d\leq\delta<1.The size of the data structure is O(n^{\delta d}\log n) if 1/d\leq\delta<1/2, or O(n^{\delta d-2\delta+1}) if 1/2\leq \delta<1.
        
    @InProceedings{oh_et_al:LIPIcs.ISAAC.2017.60,
  author =	{Oh, Eunjin and Ahn, Hee-Kap},
  title =	{{Finding Pairwise Intersections of Rectangles in a Query Rectangle}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{60:1--60:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.60},
  URN =		{urn:nbn:de:0030-drops-82417},
  doi =		{10.4230/LIPIcs.ISAAC.2017.60},
  annote =	{Keywords: Geometric data structures, axis-parallel rectangles, intersection}
}
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                    