A c-color choice dictionary of size n in N is a fundamental data structure in the development of space-efficient algorithms that stores the colors of n elements and that supports operations to get and change the color of an element as well as an operation choice that returns an arbitrary element of that color. For an integer f>0 and a constant c=2^f, we present a word-RAM algorithm for a c-color choice dictionary of size n that supports all operations above in constant time and uses only nf+1 bits, which is optimal if all operations have to run in o(n/w) time where w is the word size. In addition, we extend our choice dictionary by an operation union without using more space.
@InProceedings{kammer_et_al:LIPIcs.ISAAC.2018.66, author = {Kammer, Frank and Sajenko, Andrej}, title = {{Simple 2^f-Color Choice Dictionaries}}, booktitle = {29th International Symposium on Algorithms and Computation (ISAAC 2018)}, pages = {66:1--66:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-094-1}, ISSN = {1868-8969}, year = {2018}, volume = {123}, editor = {Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.66}, URN = {urn:nbn:de:0030-drops-100141}, doi = {10.4230/LIPIcs.ISAAC.2018.66}, annote = {Keywords: space efficient, succinct, word RAM} }
Feedback for Dagstuhl Publishing