LIPIcs.ISAAC.2018.67.pdf
- Filesize: 383 kB
- 12 pages
We study the problem of approximate shortest path queries in chordal graphs and give a n log n + o(n log n) bit data structure to answer the approximate distance query to within an additive constant of 1 in O(1) time. We study the problem of succinctly storing a static chordal graph to answer adjacency, degree, neighbourhood and shortest path queries. Let G be a chordal graph with n vertices. We design a data structure using the information theoretic minimal n^2/4 + o(n^2) bits of space to support the queries: - whether two vertices u,v are adjacent in time f(n) for any f(n) in omega(1). - the degree of a vertex in O(1) time. - the vertices adjacent to u in (f(n))^2 time per neighbour - the length of the shortest path from u to v in O(nf(n)) time
Feedback for Dagstuhl Publishing