OASIcs.SOSA.2019.14.pdf
- Filesize: 380 kB
- 9 pages
The maximum genus gamma_M(G) of a graph G is the largest genus of an orientable surface into which G has a cellular embedding. Combinatorially, it coincides with the maximum number of disjoint pairs of adjacent edges of G whose removal results in a connected spanning subgraph of G. In this paper we describe a greedy 2-approximation algorithm for maximum genus by proving that removing pairs of adjacent edges from G arbitrarily while retaining connectedness leads to at least gamma_M(G)/2 pairs of edges removed. As a consequence of our approach we also obtain a 2-approximate counterpart of Xuong's combinatorial characterisation of maximum genus.
Feedback for Dagstuhl Publishing