OASIcs.SOSA.2018.7.pdf
- Filesize: 468 kB
- 9 pages
We consider the problem of sampling an edge almost uniformly from an unknown graph, G = (V, E). Access to the graph is provided via queries of the following types: (1) uniform vertex queries, (2) degree queries, and (3) neighbor queries. We describe a new simple algorithm that returns a random edge e in E using \tilde{O}(n/sqrt{eps m}) queries in expectation, such that each edge e is sampled with probability (1 +/- eps)/m. Here, n = |V| is the number of vertices, and m = |E| is the number of edges. Our algorithm is optimal in the sense that any algorithm that samples an edge from an almost-uniform distribution must perform Omega(n/sqrt{m}) queries.
Feedback for Dagstuhl Publishing