Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Cazaux, Bastien; Rivals, Eric https://www.dagstuhl.de/lipics License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-86881
URL:

;

Superstrings with multiplicities

pdf-format:


Abstract

A superstring of a set of words P = {s_1, ..., s_p } is a string that contains each word of P as substring. Given P, the well known Shortest Linear Superstring problem (SLS), asks for a shortest superstring of P. In a variant of SLS, called Multi-SLS, each word s_i comes with an integer m(i), its multiplicity, that sets a constraint on its number of occurrences, and the goal is to find a shortest superstring that contains at least m(i) occurrences of s_i. Multi-SLS generalizes SLS and is obviously as hard to solve, but it has been studied only in special cases (with words of length 2 or with a fixed number of words). The approximability of Multi-SLS in the general case remains open. Here, we study the approximability of Multi-SLS and that of the companion problem Multi-SCCS, which asks for a shortest cyclic cover instead of shortest superstring. First, we investigate the approximation of a greedy algorithm for maximizing the compression offered by a superstring or by a cyclic cover: the approximation ratio is 1/2 for Multi-SLS and 1 for Multi-SCCS. Then, we exhibit a linear time approximation algorithm, Concat-Greedy, and show it achieves a ratio of 4 regarding the superstring length. This demonstrates that for both measures Multi-SLS belongs to the class of APX problems.

BibTeX - Entry

@InProceedings{cazaux_et_al:LIPIcs:2018:8688,
  author =	{Bastien Cazaux and Eric Rivals},
  title =	{{Superstrings with multiplicities}},
  booktitle =	{Annual Symposium on Combinatorial Pattern Matching  (CPM 2018)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-074-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{105},
  editor =	{Gonzalo Navarro and David Sankoff and Binhai Zhu},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2018/8688},
  URN =		{urn:nbn:de:0030-drops-86881},
  doi =		{10.4230/LIPIcs.CPM.2018.21},
  annote =	{Keywords: greedy algorithm, approximation, overlap, cyclic cover, APX, subset system}
}

Keywords: greedy algorithm, approximation, overlap, cyclic cover, APX, subset system
Seminar: Annual Symposium on Combinatorial Pattern Matching (CPM 2018)
Issue date: 2018
Date of publication: 18.05.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI