Longest substring palindrome after edit

Authors Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai , Masayuki Takeda



PDF
Thumbnail PDF

File

LIPIcs.CPM.2018.12.pdf
  • Filesize: 0.56 MB
  • 14 pages

Document Identifiers

Author Details

Mitsuru Funakoshi
  • Department of Physics, Kyushu University, Japan
Yuto Nakashima
  • Department of Informatics, Kyushu University, Japan
Shunsuke Inenaga
  • Department of Informatics, Kyushu University, Japan
Hideo Bannai
  • Department of Informatics, Kyushu University, Japan
Masayuki Takeda
  • Department of Informatics, Kyushu University, Japan

Cite As Get BibTex

Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Longest substring palindrome after edit. In 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 105, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.CPM.2018.12

Abstract

It is known that the length of the longest substring palindromes (LSPals) of a given string T of length n can be computed in O(n) time by Manacher's algorithm [J. ACM '75]. In this paper, we consider the problem of finding the LSPal after the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(log (min {sigma, log n })) time after single character substitution, insertion, or deletion, where sigma denotes the number of distinct characters appearing in T. We also propose an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(l + log n) time, after an existing substring in T is replaced by a string of arbitrary length l.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial algorithms
Keywords
  • maximal palindromes
  • edit operations
  • periodicity
  • suffix trees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and Jakub Radoszewski. Longest common factor after one edit operation. In SPIRE 2017, pages 14-26, 2017. Google Scholar
  2. Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in a string. Theoretical Computer Science, 141:163-173, 1995. Google Scholar
  3. Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN 2000, pages 88-94, 2000. Google Scholar
  4. Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. SIAM J. Comput., 34(4):894-923, 2005. Google Scholar
  5. Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of suffix tree construction. J. ACM, 47(6):987-1011, 2000. Google Scholar
  6. Pawel Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl, and Florin Manea. Tighter bounds and optimal algorithms for all maximal α-gapped repeats and palindromes - finding all maximal α-gapped repeats and palindromes in optimal worst case time on integer alphabets. Theory Comput. Syst., 62(1):162-191, 2018. Google Scholar
  7. Leszek Ga̧sieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech Rytter. Efficient algorithms for Lempel-Ziv encoding. In Proc. 5th Scandinavian Workshop on Algorithm Theory (SWAT1996), volume 1097 of LNCS, pages 392-403. Springer, 1996. Google Scholar
  8. Richard Groult, Élise Prieur, and Gwénaël Richomme. Counting distinct palindromes in a word in linear time. Inf. Process. Lett., 110(20):908-912, 2010. Google Scholar
  9. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997. Google Scholar
  10. Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput., 13(2):338-355, 1984. Google Scholar
  11. Roman Kolpakov and Gregory Kucherov. Searching for gapped palindromes. Theor. Comput. Sci., 410(51):5365-5373, 2009. Google Scholar
  12. Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Finding distinct subpalindromes online. In Proceedings of the Prague Stringology Conference 2013, Prague, Czech Republic, September 2-4, 2013, pages 63-69, 2013. Google Scholar
  13. Glenn Manacher. A new linear-time "on-line" algorithm for finding the smallest initial palindrome of a string. Journal of the ACM, 22:346-351, 1975. Google Scholar
  14. W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto. Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theor. Comput. Sci., 410(8-10):900-913, 2009. Google Scholar
  15. Shintaro Narisada, Diptarama, Kazuyuki Narisawa, Shunsuke Inenaga, and Ayumi Shinohara. Computing longest single-arm-gapped palindromes in a string. In SOFSEM 2017, pages 375-386, 2017. Google Scholar
  16. Alexandre H. L. Porto and Valmir C. Barbosa. Finding approximate palindromes in strings. Pattern Recognition, 35:2581-2591, 2002. Google Scholar
  17. Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and parallelization. SIAM J. Comput., 17(6):1253-1262, 1988. Google Scholar
  18. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995. Google Scholar
  19. Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and Automata Theory, pages 1-11, 1973. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail