Faster Algorithms for some Optimization Problems on Collinear Points

Authors Ahmad Biniaz, Prosenjit Bose, Paz Carmi, Anil Maheshwari, Ian Munro, Michiel Smid



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2018.8.pdf
  • Filesize: 0.78 MB
  • 14 pages

Document Identifiers

Author Details

Ahmad Biniaz
Prosenjit Bose
Paz Carmi
Anil Maheshwari
Ian Munro
Michiel Smid

Cite As Get BibTex

Ahmad Biniaz, Prosenjit Bose, Paz Carmi, Anil Maheshwari, Ian Munro, and Michiel Smid. Faster Algorithms for some Optimization Problems on Collinear Points. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.SoCG.2018.8

Abstract

We propose faster algorithms for the following three optimization problems on n collinear points, i.e., points in dimension one. The first two problems are known to be NP-hard in higher dimensions.
1) Maximizing total area of disjoint disks: In this problem the goal is to maximize the total area of nonoverlapping disks centered at the points. Acharyya, De, and Nandy (2017) presented an O(n^2)-time algorithm for this problem. We present an optimal Theta(n)-time algorithm.
2) Minimizing sum of the radii of client-server coverage: The n points are partitioned into two sets, namely clients and servers. The goal is to minimize the sum of the radii of disks centered at servers such that every client is in some disk, i.e., in the coverage range of some server. Lev-Tov and Peleg (2005) presented an O(n^3)-time algorithm for this problem. We present an O(n^2)-time algorithm, thereby improving the running time by a factor of Theta(n).
3) Minimizing total area of point-interval coverage: The n input points belong to an interval I. The goal is to find a set of disks of minimum total area, covering I, such that every disk contains at least one input point. We present an algorithm that solves this problem in O(n^2) time.

Subject Classification

Keywords
  • collinear points
  • range assignment

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ankush Acharyya, Minati De, and Subhas C. Nandy. Range assignment of base-stations maximizing coverage area without interference. In Proceedings of the 29th Canadian Conference on Computational Geometry (CCCG), pages 126-131, 2017. Google Scholar
  2. Ankush Acharyya, Minati De, Subhas C. Nandy, and Bodhayan Roy. Range assignment of base-stations maximizing coverage area without interference. CoRR, abs/1705.09346, 2017. Google Scholar
  3. Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P. Fekete, Christian Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and Kim Whittlesey. Minimum-cost coverage of point sets by disks. In Proceedings of the 22nd ACM Symposium on Computational Geometry, (SoCG), pages 449-458, 2006. Google Scholar
  4. Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. Geometric clustering to minimize the sum of cluster sizes. In Proceedings of the 13th European Symposium on Algorithms, (ESA), pages 460-471, 2005. Google Scholar
  5. Ahmad Biniaz, Prosenjit Bose, Paz Carmi, Anil Maheshwari, Ian Munro, and Michiel Smid. Faster algorithms for some optimization problems on collinear points. CoRR, abs/1802.09505, 2018. Google Scholar
  6. Paz Carmi, Matthew J. Katz, and Joseph S. B. Mitchell. The minimum-area spanning tree problem. Computational Geometry: Theory and Applications, 35(3):218-225, 2006. Google Scholar
  7. Erin W. Chambers, Sándor P. Fekete, Hella-Franziska Hoffmann, Dimitri Marinakis, Joseph S. B. Mitchell, Srinivasan Venkatesh, Ulrike Stege, and Sue Whitesides. Connecting a set of circles with minimum sum of radii. Computational Geometry: Theory and Applications, 68:62-76, 2018. Google Scholar
  8. David Eppstein. Maximizing the sum of radii of disjoint balls or disks. In Proceedings of the 28th Canadian Conference on Computational Geometry (CCCG), pages 260-265, 2016. Google Scholar
  9. Ju Yuan Hsiao, Chuan Yi Tang, and Ruay Shiung Chang. An efficient algorithm for finding a maximum weight 2-independent set on interval graphs. Information Processing Letters, 43(5):229-235, 1992. Google Scholar
  10. Nissan Lev-Tov and David Peleg. Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks, 47(4):489-501, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail