Creative Commons Attribution 3.0 Unported license
We make progress on a number of open problems concerning the area requirement for drawing trees on a grid. We prove that
1) every tree of size n (with arbitrarily large degree) has a straight-line drawing with area n2^{O(sqrt{log log n log log log n})}, improving the longstanding O(n log n) bound;
2) every tree of size n (with arbitrarily large degree) has a straight-line upward drawing with area n sqrt{log n}(log log n)^{O(1)}, improving the longstanding O(n log n) bound;
3) every binary tree of size n has a straight-line orthogonal drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Shin, Kim, and Chwa (1996) and Chan, Goodrich, Kosaraju, and Tamassia (1996);
4) every binary tree of size n has a straight-line order-preserving drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Garg and Rusu (2003);
5) every binary tree of size n has a straight-line orthogonal order-preserving drawing with area n2^{O(sqrt{log n})}, improving the O(n^{3/2}) previous bound by Frati (2007).
@InProceedings{chan:LIPIcs.SoCG.2018.23,
author = {Chan, Timothy M.},
title = {{Tree Drawings Revisited}},
booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)},
pages = {23:1--23:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-066-8},
ISSN = {1868-8969},
year = {2018},
volume = {99},
editor = {Speckmann, Bettina and T\'{o}th, Csaba D.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.23},
URN = {urn:nbn:de:0030-drops-87364},
doi = {10.4230/LIPIcs.SoCG.2018.23},
annote = {Keywords: graph drawing, trees, recursion}
}