LIPIcs.SoCG.2018.23.pdf
- Filesize: 0.56 MB
- 15 pages
We make progress on a number of open problems concerning the area requirement for drawing trees on a grid. We prove that 1) every tree of size n (with arbitrarily large degree) has a straight-line drawing with area n2^{O(sqrt{log log n log log log n})}, improving the longstanding O(n log n) bound; 2) every tree of size n (with arbitrarily large degree) has a straight-line upward drawing with area n sqrt{log n}(log log n)^{O(1)}, improving the longstanding O(n log n) bound; 3) every binary tree of size n has a straight-line orthogonal drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Shin, Kim, and Chwa (1996) and Chan, Goodrich, Kosaraju, and Tamassia (1996); 4) every binary tree of size n has a straight-line order-preserving drawing with area n2^{O(log^*n)}, improving the previous O(n log log n) bound by Garg and Rusu (2003); 5) every binary tree of size n has a straight-line orthogonal order-preserving drawing with area n2^{O(sqrt{log n})}, improving the O(n^{3/2}) previous bound by Frati (2007).
Feedback for Dagstuhl Publishing