Creative Commons Attribution 3.0 Unported license
We present the first near-linear-time (1 + epsilon)-approximation algorithm for the diameter of a weighted unit-disk graph of n vertices, running in O(n log^2 n) time, for any constant epsilon>0, improving the near-O(n^{3/2})-time algorithm of Gao and Zhang [STOC 2003]. Using similar ideas, we can construct a (1+epsilon)-approximate distance oracle for weighted unit-disk graphs with O(1) query time, with a similar improvement in the preprocessing time, from near O(n^{3/2}) to O(n log^3 n). We also obtain new results for a number of other related problems in the weighted unit-disk graph metric, such as the radius and bichromatic closest pair.
As a further application, we use our new distance oracle, along with additional ideas, to solve the (1 + epsilon)-approximate all-pairs bounded-leg shortest paths problem for a set of n planar points, with near O(n^{2.579}) preprocessing time, O(n^2 log n) space, and O(log{log n}) query time, improving thus the near-cubic preprocessing bound by Roditty and Segal [SODA 2007].
@InProceedings{chan_et_al:LIPIcs.SoCG.2018.24,
author = {Chan, Timothy M. and Skrepetos, Dimitrios},
title = {{Approximate Shortest Paths and Distance Oracles in Weighted Unit-Disk Graphs}},
booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)},
pages = {24:1--24:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-066-8},
ISSN = {1868-8969},
year = {2018},
volume = {99},
editor = {Speckmann, Bettina and T\'{o}th, Csaba D.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.24},
URN = {urn:nbn:de:0030-drops-87375},
doi = {10.4230/LIPIcs.SoCG.2018.24},
annote = {Keywords: shortest paths, distance oracles, unit-disk graphs, planar graphs}
}