LIPIcs.SoCG.2018.30.pdf
- Filesize: 0.76 MB
- 14 pages
Let P be a set of n polygons in R^3, each of constant complexity and with pairwise disjoint interiors. We propose a rounding algorithm that maps P to a simplicial complex Q whose vertices have integer coordinates. Every face of P is mapped to a set of faces (or edges or vertices) of Q and the mapping from P to Q can be done through a continuous motion of the faces such that (i) the L_infty Hausdorff distance between a face and its image during the motion is at most 3/2 and (ii) if two points become equal during the motion, they remain equal through the rest of the motion. In the worst case, the size of Q is O(n^{15}) and the time complexity of the algorithm is O(n^{19}) but, under reasonable hypotheses, these complexities decrease to O(n^{5}) and O(n^{6}sqrt{n}).
Feedback for Dagstuhl Publishing