Smallest Enclosing Spheres and Chernoff Points in BregmanGeometry

Authors Herbert Edelsbrunner, Ziga Virk, Hubert Wagner



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2018.35.pdf
  • Filesize: 477 kB
  • 13 pages

Document Identifiers

Author Details

Herbert Edelsbrunner
Ziga Virk
Hubert Wagner

Cite As Get BibTex

Herbert Edelsbrunner, Ziga Virk, and Hubert Wagner. Smallest Enclosing Spheres and Chernoff Points in BregmanGeometry. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 35:1-35:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.SoCG.2018.35

Abstract

Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.

Subject Classification

Keywords
  • Bregman divergence
  • smallest enclosing spheres
  • Chernoff points
  • convexity
  • barycenter polytopes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail