LIPIcs.SoCG.2018.49.pdf
- Filesize: 1.82 MB
- 15 pages
It is a long standing open problem whether Yao-Yao graphs YY_{k} are all spanners [Li et al. 2002]. Bauer and Damian [Bauer and Damian, 2012] showed that all YY_{6k} for k >= 6 are spanners. Li and Zhan [Li and Zhan, 2016] generalized their result and proved that all even Yao-Yao graphs YY_{2k} are spanners (for k >= 42). However, their technique cannot be extended to odd Yao-Yao graphs, and whether they are spanners are still elusive. In this paper, we show that, surprisingly, for any integer k >= 1, there exist odd Yao-Yao graph YY_{2k+1} instances, which are not spanners.
Feedback for Dagstuhl Publishing