Edge-Unfolding Nearly Flat Convex Caps

Author Joseph O'Rourke



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2018.64.pdf
  • Filesize: 3.25 MB
  • 14 pages

Document Identifiers

Author Details

Joseph O'Rourke

Cite As Get BibTex

Joseph O'Rourke. Edge-Unfolding Nearly Flat Convex Caps. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 64:1-64:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.SoCG.2018.64

Abstract

The main result of this paper is a proof that a nearly flat, acutely triangulated convex cap C in R^3 has an edge-unfolding to a non-overlapping polygon in the plane. A convex cap is the intersection of the surface of a convex polyhedron and a halfspace. "Nearly flat" means that every outer face normal forms a sufficiently small angle f < F with the z^-axis orthogonal to the halfspace bounding plane. The size of F depends on the acuteness gap a: if every triangle angle is at most pi/2 {-} a, then F ~~ 0.36 sqrt{a} suffices; e.g., for a=3°, F ~~ 5°. The proof employs the recent concepts of angle-monotone and radially monotone curves. The proof is constructive, leading to a polynomial-time algorithm for finding the edge-cuts, at worst O(n^2); a version has been implemented.

Subject Classification

Keywords
  • polyhedra
  • unfolding

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Nicholas Barvinok and Mohammad Ghomi. Pseudo-edge unfoldings of convex polyhedra. arXiv:1709.04944: https://arxiv.org/abs/1709.04944, 2017.
  2. Christopher J. Bishop. Nonobtuse triangulations of PSLGs. Discrete &Comput. Geom., 56(1):43-92, 2016. Google Scholar
  3. Nicolas Bonichon, Prosenjit Bose, Paz Carmi, Irina Kostitsyna, Anna Lubiw, and Sander Verdonschot. Gabriel triangulations and angle-monotone graphs: Local routing and recognition. In Internat. Symp. Graph Drawing Network Vis., pages 519-531. Springer, 2016. Google Scholar
  4. Ju. D. Burago and V. A. Zalgaller. Polyhedral embedding of a net. Vestnik Leningrad. Univ, 15(7):66-80, 1960. In Russian. Google Scholar
  5. Hooman Reisi Dehkordi, Fabrizio Frati, and Joachim Gudmundsson. Increasing-chord graphs on point sets. J. Graph Algorithms Applications, 19(2):761-778, 2015. Google Scholar
  6. Erik D. Demaine and Joseph O'Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007. URL: http://www.gfalop.org.
  7. Mohammad Ghomi. Affine unfoldings of convex polyhedra. Geometry &Topology, 18(5):3055-3090, 2014. Google Scholar
  8. John M. Lee. Riemannian Manifolds: An Introduction to Curvature, volume 176. Springer Science &Business Media, 2006. Google Scholar
  9. Anna Lubiw and Joseph O'Rourke. Angle-monotone paths in non-obtuse triangulations. In Proc. 29th Canad. Conf. Comput. Geom., 2017. arXiv:1707.00219 [cs.CG]: URL: https://arxiv.org/abs/1707.00219.
  10. Joseph O'Rourke. Dürer’s problem. In Marjorie Senechal, editor, Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, pages 77-86. Springer, 2013. Google Scholar
  11. Joseph O'Rourke. Unfolding convex polyhedra via radially monotone cut trees. arXiv:1607.07421 [cs.CG]: https://arxiv.org/abs/1607.07421, 2016.
  12. Joseph O'Rourke. Addendum to edge-unfolding nearly flat convex caps. arXiv:1709.02433 [cs.CG]: http://arxiv.org/abs/1709.02433, 2017.
  13. Joseph O'Rourke. Edge-unfolding nearly flat convex caps. arXiv:1707.01006v2 [cs.CG]: http://arxiv.org/abs/1707.01006. Version 2, 2017.
  14. Val Pincu. On the fewest nets problem for convex polyhedra. In Proc. 19th Canad. Conf. Comput. Geom., pages 21-24, 2007. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail