LIPIcs.SWAT.2018.7.pdf
- Filesize: 421 kB
- 13 pages
We consider a multistage version of the Perfect Matching problem which models the scenario where the costs of edges change over time and we seek to obtain a solution that achieves low total cost, while minimizing the number of changes from one instance to the next. Formally, we are given a sequence of edge-weighted graphs on the same set of vertices V, and are asked to produce a perfect matching in each instance so that the total edge cost plus the transition cost (the cost of exchanging edges), is minimized. This model was introduced by Gupta et al. (ICALP 2014), who posed as an open problem its approximability for bipartite instances. We completely resolve this question by showing that Minimum Multistage Perfect Matching (Min-MPM) does not admit an n^{1-epsilon}-approximation, even on bipartite instances with only two time steps. Motivated by this negative result, we go on to consider two variations of the problem. In Metric Minimum Multistage Perfect Matching problem (Metric-Min-MPM) we are promised that edge weights in each time step satisfy the triangle inequality. We show that this problem admits a 3-approximation when the number of time steps is 2 or 3. On the other hand, we show that even the metric case is APX-hard already for 2 time steps. We then consider the complementary maximization version of the problem, Maximum Multistage Perfect Matching problem (Max-MPM), where we seek to maximize the total profit of all selected edges plus the total number of non-exchanged edges. We show that Max-MPM is also APX-hard, but admits a constant factor approximation algorithm for any number of time steps.
Feedback for Dagstuhl Publishing