LIPIcs.AofA.2018.3.pdf
- Filesize: 169 kB
- 1 pages
Since the advent of fast computers, much attention has been paid to practical factoring algorithms. Several of these algorithms set out to find two squares x^2, y^2 that are congruent modulo the number n we wish to factor, and are non-trivial in the sense that x is not equivalent to +/- y mod n. In 1994, this prompted Pomerance to ask the following question. Let a_1, a_2, ... be random integers, chosen independently and uniformly from a set {1, ... x}. Let N be the smallest index such that {a_1, ... , a_N} contains a subsequence, the product of whose elements is a perfect square. What can you say about this random number N? In particular, give bounds N_0 and N_1 such that P(N_0 <= N <= N_1)-> 1 as x -> infty. Pomerance also gave bounds N_0 and N_1 with log N_0 ~ log N_1. In 2012, Croot, Granville, Pemantle and Tetali significantly improved these bounds of Pomerance, bringing them within a constant of each other, and conjectured that their upper bound is sharp. In a recent paper, Paul Balister, Rob Morris and I have proved this conjecture. In the talk I shall review some related results and sketch some of the ideas used in our proof.
Feedback for Dagstuhl Publishing