Since the advent of fast computers, much attention has been paid to practical factoring algorithms. Several of these algorithms set out to find two squares x^2, y^2 that are congruent modulo the number n we wish to factor, and are non-trivial in the sense that x is not equivalent to +/- y mod n. In 1994, this prompted Pomerance to ask the following question. Let a_1, a_2, ... be random integers, chosen independently and uniformly from a set {1, ... x}. Let N be the smallest index such that {a_1, ... , a_N} contains a subsequence, the product of whose elements is a perfect square. What can you say about this random number N? In particular, give bounds N_0 and N_1 such that P(N_0 <= N <= N_1)-> 1 as x -> infty. Pomerance also gave bounds N_0 and N_1 with log N_0 ~ log N_1. In 2012, Croot, Granville, Pemantle and Tetali significantly improved these bounds of Pomerance, bringing them within a constant of each other, and conjectured that their upper bound is sharp. In a recent paper, Paul Balister, Rob Morris and I have proved this conjecture. In the talk I shall review some related results and sketch some of the ideas used in our proof.
@InProceedings{bollobas:LIPIcs.AofA.2018.3, author = {Bollob\'{a}s, B\'{e}la}, title = {{Making Squares - Sieves, Smooth Numbers, Cores and Random Xorsat}}, booktitle = {29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)}, pages = {3:1--3:1}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-078-1}, ISSN = {1868-8969}, year = {2018}, volume = {110}, editor = {Fill, James Allen and Ward, Mark Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.3}, URN = {urn:nbn:de:0030-drops-88967}, doi = {10.4230/LIPIcs.AofA.2018.3}, annote = {Keywords: integer factorization, perfect square, random graph process} }