LIPIcs.AofA.2018.10.pdf
- Filesize: 0.7 MB
- 14 pages
In a companion article dedicated to the enumeration aspects, we showed how to obtain closed form formulas for the generating functions of walks, bridges, meanders, and excursions avoiding any fixed word (a pattern p). The autocorrelation polynomial of this forbidden pattern p (as introduced by Guibas and Odlyzko in 1981, in the context of regular expressions) plays a crucial role. In this article, we get the asymptotics of these walks. We also introduce a trivariate generating function (length, final altitude, number of occurrences of p), for which we derive a closed form. We prove that the number of occurrences of p is normally distributed: This is what Flajolet and Sedgewick call an instance of Borges's theorem. We thus extend and refine the study by Banderier and Flajolet in 2002 on lattice paths, and we unify several dozens of articles which investigated patterns like peaks, valleys, humps, etc., in Dyck and Motzkin paths. Our approach relies on methods of analytic combinatorics, and on a matricial generalization of the kernel method. The situation is much more involved than in the Banderier-Flajolet work: forbidden patterns lead to a wider zoology of asymptotic behaviours, and we classify them according to the geometry of a Newton polygon associated with these constrained walks, and we analyse what are the universal phenomena common to all these models of lattice paths avoiding a pattern.
Feedback for Dagstuhl Publishing