LIPIcs.AofA.2018.34.pdf
- Filesize: 496 kB
- 11 pages
We prove limit theorems describing the asymptotic behaviour of a typical vertex in random simply generated trees as their sizes tends to infinity. In the standard case of a critical Galton-Watson tree conditioned to be large, the limit is the invariant random sin-tree constructed by Aldous (1991). Our main contribution lies in the condensation regime where vertices of macroscopic degree appear. Here we describe in complete generality the asymptotic local behaviour from a random vertex up to its first ancestor with "large" degree. Beyond this distinguished ancestor, different behaviours may occur, depending on the branching weights. In a subregime of complete condensation, we obtain convergence toward a novel limit tree, that describes the asymptotic shape of the vicinity of the full path from a random vertex to the root vertex. This includes the important case where the offspring distribution follows a power law up to a factor that varies slowly at infinity.
Feedback for Dagstuhl Publishing