We give faster and simpler approximation algorithms for the (1,2)-TSP problem, a well-studied variant of the traveling salesperson problem where all distances between cities are either 1 or 2. Our main results are two approximation algorithms for (1,2)-TSP, one with approximation factor 8/7 and run time O(n^3) and the other having an approximation guarantee of 7/6 and run time O(n^{2.5}). The 8/7-approximation matches the best known approximation factor for (1,2)-TSP, due to Berman and Karpinski (SODA 2006), but considerably improves the previous best run time of O(n^9). Thus, ours is the first improvement for the (1,2)-TSP problem in more than 10 years. The algorithm is based on combining three copies of a minimum-cost cycle cover of the input graph together with a relaxed version of a minimum weight matching, which allows using "half-edges". The resulting multigraph is then edge-colored with four colors so that each color class yields a collection of vertex-disjoint paths. The paths from one color class can then be extended to an 8/7-approximate traveling salesperson tour. Our algorithm, and in particular its analysis, is simpler than the previously best 8/7-approximation. The 7/6-approximation algorithm is similar and even simpler, and has the advantage of not using Hartvigsen's complicated algorithm for computing a minimum-cost triangle-free cycle cover.
@InProceedings{adamaszek_et_al:LIPIcs.ICALP.2018.9, author = {Adamaszek, Anna and Mnich, Matthias and Paluch, Katarzyna}, title = {{New Approximation Algorithms for (1,2)-TSP}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {9:1--9:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.9}, URN = {urn:nbn:de:0030-drops-90133}, doi = {10.4230/LIPIcs.ICALP.2018.9}, annote = {Keywords: Approximation algorithms, traveling salesperson problem, cycle cover} }
Feedback for Dagstuhl Publishing