LIPIcs.ICALP.2018.12.pdf
- Filesize: 493 kB
- 14 pages
Holant problems are a family of counting problems on graphs, parametrised by sets of complex-valued functions of Boolean inputs. Holant^c denotes a subfamily of those problems, where any function set considered must contain the two unary functions pinning inputs to values 0 or 1. The complexity classification of Holant problems usually takes the form of dichotomy theorems, showing that for any set of functions in the family, the problem is either #P-hard or it can be solved in polynomial time. Previous such results include a dichotomy for real-valued Holant^c and one for Holant^c with complex symmetric functions, i.e. functions which only depend on the Hamming weight of the input. Here, we derive a dichotomy theorem for Holant^c with complex-valued, not necessarily symmetric functions. The tractable cases are the complex-valued generalisations of the tractable cases of the real-valued Holant^c dichotomy. The proof uses results from quantum information theory, particularly about entanglement. This full dichotomy for Holant^c answers a question that has been open for almost a decade.
Feedback for Dagstuhl Publishing