LIPIcs.ICALP.2018.37.pdf
- Filesize: 486 kB
- 13 pages
The restricted max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. It is NP-hard to approximate the problem to a ratio less than 2. Comparing the current best algorithm for estimating the optimal value with the current best for constructing an allocation, there is quite a gap between the ratios that can be achieved in polynomial time: 4+delta for estimation and 6 + 2 sqrt{10} + delta ~~ 12.325 + delta for construction, where delta is an arbitrarily small constant greater than 0. We propose an algorithm that constructs an allocation with value within a factor 6 + delta from the optimum for any constant delta > 0. The running time is polynomial in the input size for any constant delta chosen.
Feedback for Dagstuhl Publishing