Finding Branch-Decompositions of Matroids, Hypergraphs, and More

Authors Jisu Jeong, Eun Jung Kim, Sang-il Oum



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2018.80.pdf
  • Filesize: 0.51 MB
  • 14 pages

Document Identifiers

Author Details

Jisu Jeong
  • Department of Mathematical Sciences, KAIST, Daejeon, Korea
Eun Jung Kim
  • Université Paris-Dauphine, PSL Research University, CNRS, Paris, France
Sang-il Oum
  • Department of Mathematical Sciences, KAIST, Daejeon, Korea

Cite As Get BibTex

Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Finding Branch-Decompositions of Matroids, Hypergraphs, and More. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 80:1-80:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.ICALP.2018.80

Abstract

Given n subspaces of a finite-dimensional vector space over a fixed finite field F, we wish to find a "branch-decomposition" of these subspaces of width at most k, that is a subcubic tree T with n leaves mapped bijectively to the subspaces such that for every edge e of T, the sum of subspaces associated to the leaves in one component of T-e and the sum of subspaces associated to the leaves in the other component have the intersection of dimension at most k. This problem includes the problems of computing branch-width of F-represented matroids, rank-width of graphs, branch-width of hypergraphs, and carving-width of graphs.
We present a fixed-parameter algorithm to construct such a branch-decomposition of width at most k, if it exists, for input subspaces of a finite-dimensional vector space over F. Our algorithm is analogous to the algorithm of Bodlaender and Kloks (1996) on tree-width of graphs. To extend their framework to branch-decompositions of vector spaces, we developed highly generic tools for branch-decompositions on vector spaces. For this problem, a fixed-parameter algorithm was known due to Hlinený and Oum (2008). But their method is highly indirect. Their algorithm uses the non-trivial fact by Geelen et al. (2003) that the number of forbidden minors is finite and uses the algorithm of Hlinený (2006) on checking monadic second-order formulas on F-represented matroids of small branch-width. Our result does not depend on such a fact and is completely self-contained, and yet matches their asymptotic running time for each fixed k.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Mathematics of computing → Graph algorithms
Keywords
  • branch-width
  • rank-width
  • carving-width
  • fixed-parameter tractability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996. URL: http://dx.doi.org/10.1006/jagm.1996.0049.
  2. Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for branchwidth. In Automata, languages and programming (Bologna, 1997), volume 1256 of Lecture Notes in Comput. Sci., pages 627-637. Springer, Berlin, 1997. URL: http://dx.doi.org/10.1007/3-540-63165-8_217.
  3. James F. Geelen, A. M. H. Gerards, Neil Robertson, and Geoff Whittle. On the excluded minors for the matroids of branch-width k. J. Combin. Theory Ser. B, 88(2):261-265, 2003. URL: http://dx.doi.org/10.1016/S0095-8956(02)00046-1.
  4. Petr Hliněný. A parametrized algorithm for matroid branch-width. SIAM J. Comput., 35(2):259-277, 2005. URL: http://dx.doi.org/10.1137/S0097539702418589.
  5. Petr Hliněný. Branch-width, parse trees, and monadic second-order logic for matroids. J. Combin. Theory Ser. B, 96(3):325-351, 2006. URL: http://dx.doi.org/10.1016/j.jctb.2005.08.005.
  6. Petr Hliněný and Sang-il Oum. Finding branch-decompositions and rank-decompositions. SIAM J. Comput., 38(3):1012-1032, 2008. URL: http://dx.doi.org/10.1137/070685920.
  7. Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of matroids. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 1695-1704, Philadelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics. URL: http://dx.doi.org/10.1137/1.9781611974331.ch116.
  8. Jisu Jeong, Eun Jung Kim, and Sang-il Oum. The "art of trellis decoding" is fixed-parameter tractable. IEEE Trans. Inform. Theory, 63(11):7178-7205, 2017. An extended abstract appeared in a conference proceeding [7]. URL: http://dx.doi.org/10.1109/TIT.2017.2740283.
  9. Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite congruence. In Automata, languages and programming (Madrid, 1991), volume 510 of Lecture Notes in Comput. Sci., pages 532-543. Springer, Berlin, 1991. URL: http://dx.doi.org/10.1007/3-540-54233-7_161.
  10. Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006. URL: http://dx.doi.org/10.1016/j.jctb.2005.10.006.
  11. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004. URL: http://dx.doi.org/10.1016/j.orl.2003.10.009.
  12. Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B, 52(2):153-190, 1991. URL: http://dx.doi.org/10.1016/0095-8956(91)90061-N.
  13. Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994. URL: http://dx.doi.org/10.1007/BF01215352.
  14. Dimitrios M. Thilikos and Hans L. Bodlaender. Constructive linear time algorithms for branchwidth. Technical Report UU-CS 2000-38, Universiteit Utrecht, 2000. URL: http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-38.pdf.
  15. Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Constructive linear time algorithms for small cutwidth and carving-width. In Algorithms and computation (Taipei, 2000), volume 1969 of Lecture Notes in Comput. Sci., pages 192-203. Springer, Berlin, 2000. URL: http://dx.doi.org/10.1007/3-540-40996-3_17.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail