LIPIcs.ICALP.2018.88.pdf
- Filesize: 0.53 MB
- 13 pages
We present the current fastest deterministic algorithm for k-SAT, improving the upper bound (2-2/k)^{n + o(n)} due to Moser and Scheder in STOC 2011. The algorithm combines a branching algorithm with the derandomized local search, whose analysis relies on a special sequence of clauses called chain, and a generalization of covering code based on linear programming. We also provide a more intelligent branching algorithm for 3-SAT to establish the upper bound 1.32793^n, improved from 1.3303^n.
Feedback for Dagstuhl Publishing