LIPIcs.ICALP.2018.96.pdf
- Filesize: 409 kB
- 14 pages
The k-center problem is a classical combinatorial optimization problem which asks to find k centers such that the maximum distance of any input point in a set P to its assigned center is minimized. The problem allows for elegant 2-approximations. However, the situation becomes significantly more difficult when constraints are added to the problem. We raise the question whether general methods can be derived to turn an approximation algorithm for a clustering problem with some constraints into an approximation algorithm that respects one constraint more. Our constraint of choice is privacy: Here, we are asked to only open a center when at least l clients will be assigned to it. We show how to combine privacy with several other constraints.
Feedback for Dagstuhl Publishing