First-Order Interpretations of Bounded Expansion Classes

Authors Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Sebastian Siebertz, Szymon Torunczyk



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2018.126.pdf
  • Filesize: 0.5 MB
  • 14 pages

Document Identifiers

Author Details

Jakub Gajarský
  • Technical University Berlin, Germany
Stephan Kreutzer
  • Technical University Berlin, Germany
Jaroslav Nesetril
  • Charles University, Prague, Czech Republic
Patrice Ossona de Mendez
  • CAMS (CNRS, UMR 8557), Paris, France
Michal Pilipczuk
  • University of Warsaw, Warsaw, Poland
Sebastian Siebertz
  • University of Warsaw, Warsaw, Poland
Szymon Torunczyk
  • University of Warsaw, Warsaw, Poland

Cite AsGet BibTex

Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. First-Order Interpretations of Bounded Expansion Classes. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 126:1-126:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ICALP.2018.126

Abstract

The notion of bounded expansion captures uniform sparsity of graph classes and renders various algorithmic problems that are hard in general tractable. In particular, the model-checking problem for first-order logic is fixed-parameter tractable over such graph classes. With the aim of generalizing such results to dense graphs, we introduce classes of graphs with structurally bounded expansion, defined as first-order interpretations of classes of bounded expansion. As a first step towards their algorithmic treatment, we provide their characterization analogous to the characterization of classes of bounded expansion via low treedepth decompositions, replacing treedepth by its dense analogue called shrubdepth.

Subject Classification

ACM Subject Classification
  • Theory of computation → Logic
  • Theory of computation → Finite Model Theory
Keywords
  • Logical interpretations/transductions
  • structurally sparse graphs
  • bounded expansion

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. B. Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook of Theoretical Computer Science, volume 2, chapter 5, pages 142-193. Elsevier, Amsterdam, 1990. Google Scholar
  2. B. Courcelle. The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inform. and Comput., 85:12-75, 1990. Google Scholar
  3. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33:125-150, 2000. Google Scholar
  4. A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In 22superscriptnd Annual IEEE Symposium on Logic in Computer Science, pages 270-279, 2007. Google Scholar
  5. A. Durand and E. Grandjean. First-order queries on structures of bounded degree are computable with constant delay. ACM Transactions on Computational Logic (TOCL), 8(4):21, 2007. Google Scholar
  6. A. Durand, N. Schweikardt, and L. Segoufin. Enumerating answers to first-order queries over databases of low degree. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 121-131. ACM, 2014. Google Scholar
  7. Z. Dvořák, D. Kráľ, and R. Thomas. Testing first-order properties for subclasses of sparse graphs. Journal of the ACM, 60:5 Article 36, 2013. Google Scholar
  8. K. Eickmeyer and K. Kawarabayashi. FO model checking on map graphs. In Proceedings of the 21st International Symposium on Fundamentals of Computation Theory, FCT 2017, pages 204-216, 2017. Google Scholar
  9. J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model checking. SIAM Journal of Computing, 31:113-145, 2001. Google Scholar
  10. M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM, 48:1148-1206, 2001. Google Scholar
  11. J. Gajarský, P. Hliněný, D. Lokshtanov, J. Obdržálek, S. Ordyniak, M.S. Ramanujan, and S. Saurabh. Fo model checking on posets of bounded width. In 56th Annual Symposium on Foundations of Computer Science (FOCS), 2015, pages 963-974. IEEE, 2015. Google Scholar
  12. J. Gajarský, P. Hliněný, J. Obdržálek, D. Lokshtanov, and M. S. Ramanujan. A new perspective on fo model checking of dense graph classes. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 176-184. ACM, 2016. Google Scholar
  13. R. Ganian, P. Hliněný, J. Obdržálek, J. Schwartz, J. Teska, and D. Kráľ. Fo model checking of interval graphs. In International Colloquium on Automata, Languages, and Programming, pages 250-262. Springer, 2013. Google Scholar
  14. R. Ganian, P. Hliněný, J. Nešetřil, J. Obdržálek, P. Ossona de Mendez, and R. Ramadurai. When trees grow low: Shrubs and fast MSO₁. In MFCS 2012, volume 7464 of Lecture Notes in Computer Science, pages 419-430. Springer-Verlag, 2012. Google Scholar
  15. V. Giakoumakis and J.-M. Vanherpe. Bi-complement reducible graphs. Adv. Appl. Math., 18:389-402, 1997. Google Scholar
  16. M. Grohe. Generalized model-checking problems for first-order logic. In Annual Symposium on Theoretical Aspects of Computer Science, pages 12-26. Springer, 2001. Google Scholar
  17. M. Grohe and S. Kreutzer. Methods for algorithmic meta-theorems. Contemporary Mathematics, 588, American Mathematical Society 2011. Google Scholar
  18. M. Grohe and S. Kreutzer. Methods for algorithmic meta theorems. In Model Theoretic Methods in Finite Combinatorics, Contemporary mathematics, pages 181-206, 2011. Google Scholar
  19. M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense graphs. Journal of the ACM, 64(3):17:1-17:32, 2017. Google Scholar
  20. Petr Hlinený, Filip Pokrývka, and Bodhayan Roy. FO model checking of geometric graphs. In 12th International Symposium on Parameterized and Exact Computation, IPEC 2017, pages 19:1-19:12, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.19.
  21. W. Kazana and L. Segoufin. Enumeration of first-order queries on classes of structures with bounded expansion. In Proceedings of the 16superscriptth International Conference on Database Theory, pages 10-20, 2013. Google Scholar
  22. W. Kazana and L. Segoufin. Enumeration of first-order queries on classes of structures with bounded expansion. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems, pages 297-308. ACM, 2013. Google Scholar
  23. O. Kwon, Mi. Pilipczuk, and S. Siebertz. On low rank-width colorings. In 43rd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2017, pages 372-385, 2017. Google Scholar
  24. J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion I. decompositions. European Journal of Combinatorics, 29(3):760-776, 2008. Google Scholar
  25. J. Nešetřil and P. Ossona de Mendez. Sparsity (Graphs, Structures, and Algorithms), volume 28 of Algorithms and Combinatorics. Springer, 2012. 465 pages. Google Scholar
  26. S. Oum. Approximating rank-width and clique-width quickly. ACM Transactions on Algorithms (TALG), 5(1):10, 2008. Google Scholar
  27. D. Seese. Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science, 5:505-526, 1996. Google Scholar
  28. L. Segoufin and W. Kazana. First-order query evaluation on structures of bounded degree. Logical Methods in Computer Science, 7, 2011. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail