LIPIcs.ICALP.2018.135.pdf
- Filesize: 0.52 MB
- 14 pages
Given a Counting Monadic Second Order (CMSO) sentence psi, the CMSO[psi] problem is defined as follows. The input to CMSO[psi] is a graph G, and the objective is to determine whether G |= psi. Our main theorem states that for every CMSO sentence psi, if CMSO[psi] is solvable in polynomial time on "globally highly connected graphs", then CMSO[psi] is solvable in polynomial time (on general graphs). We demonstrate the utility of our theorem in the design of parameterized algorithms. Specifically we show that technical problem-specific ingredients of a powerful method for designing parameterized algorithms, recursive understanding, can be replaced by a black-box invocation of our main theorem. We also show that our theorem can be easily deployed to show fixed parameterized tractability of a wide range of problems, where the input is a graph G and the task is to find a connected induced subgraph of G such that "few" vertices in this subgraph have neighbors outside the subgraph, and additionally the subgraph has a CMSO-definable property.
Feedback for Dagstuhl Publishing