LIPIcs.ICALP.2018.153.pdf
- Filesize: 435 kB
- 12 pages
The noisy broadcast model was first studied by [Gallager, 1988] where an n-character input is distributed among n processors, so that each processor receives one input bit. Computation proceeds in rounds, where in each round each processor broadcasts a single character, and each reception is corrupted independently at random with some probability p. [Gallager, 1988] gave an algorithm for all processors to learn the input in O(log log n) rounds with high probability. Later, a matching lower bound of Omega(log log n) was given by [Goyal et al., 2008]. We study a relaxed version of this model where each reception is erased and replaced with a `?' independently with probability p, so the processors have knowledge of whether a bit has been corrupted. In this relaxed model, we break past the lower bound of [Goyal et al., 2008] and obtain an O(log^* n)-round algorithm for all processors to learn the input with high probability. We also show an O(1)-round algorithm for the same problem when the alphabet size is Omega(poly(n)).
Feedback for Dagstuhl Publishing