The Quantum Complexity of Computing Schatten p-norms

Authors Chris Cade, Ashley Montanaro



PDF
Thumbnail PDF

File

LIPIcs.TQC.2018.4.pdf
  • Filesize: 446 kB
  • 20 pages

Document Identifiers

Author Details

Chris Cade
  • School of Mathematics, University of Bristol, UK
Ashley Montanaro
  • School of Mathematics, University of Bristol, UK

Cite As Get BibTex

Chris Cade and Ashley Montanaro. The Quantum Complexity of Computing Schatten p-norms. In 13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 111, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.TQC.2018.4

Abstract

We consider the quantum complexity of computing Schatten p-norms and related quantities, and find that the problem of estimating these quantities is closely related to the one clean qubit model of computation. We show that the problem of approximating Tr(|A|^p) for a log-local n-qubit Hamiltonian A and p=poly(n), up to a suitable level of accuracy, is contained in DQC1; and that approximating this quantity up to a somewhat higher level of accuracy is DQC1-hard. In some cases the level of accuracy achieved by the quantum algorithm is substantially better than a natural classical algorithm for the problem. The same problem can be solved for arbitrary sparse matrices in BQP. One application of the algorithm is the approximate computation of the energy of a graph.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum complexity theory
  • Theory of computation → Complexity classes
Keywords
  • Schatten p-norm
  • quantum complexity theory
  • complexity theory
  • one clean qubit model

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. D. Aharonov, V. Jones, and Z. Landau. A polynomial quantum algorithm for approximating the Jones polynomial. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 427-436. ACM, 2006. arXiv:quant-ph/0511096. Google Scholar
  2. D. Aharonov and T. Naveh. Quantum NP-a survey. arXiv:quant-ph/0210077, 2002. Google Scholar
  3. A. Ben-Aroya, O. Regev, and R. de Wolf. A hypercontractive inequality for matrix-valued functions with applications to quantum computing and LDCs. In FOCS'08, pages 477-486. IEEE, 2008. arXiv:0705.3806. Google Scholar
  4. D. Berry, G. Ahokas, R. Cleve, and B. Sanders. Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics, 270(2):359-371, 2007. arXiv:quant-ph/0508139. Google Scholar
  5. D. W Berry, A. Childs, and R. Kothari. Hamiltonian simulation with nearly optimal dependence on all parameters. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 792-809. IEEE, 2015. arXiv:1312.1414. Google Scholar
  6. F. Brandão. Entanglement theory and the quantum simulation of many-body physics. arXiv:0810.0026, 2008. Google Scholar
  7. F. Chung, L. Lu, and V. Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences, 100(11):6313-6318, 2003. Google Scholar
  8. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet topology. In ACM SIGCOMM computer communication review, volume 29, pages 251-262. ACM, 1999. Google Scholar
  9. O. Goldreich. On promise problems: A survey. In Theoretical computer science, pages 254-290. Springer, 2006. Google Scholar
  10. I. Gutman. The energy of a graph: old and new results. In Algebraic combinatorics and applications, pages 196-211. Springer, 2001. Google Scholar
  11. A. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Physical review letters, 103(15):150502, 2009. arXiv:0811.3171. Google Scholar
  12. P. Hayden and A. Winter. Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1. Communications in mathematical physics, 284(1):263-280, 2008. arXiv:0807.4753. Google Scholar
  13. D. Janzing and P. Wocjan. BQP-complete problems concerning mixing properties of classical random walks on sparse graphs. arXiv:quant-ph/0610235, 2006. Google Scholar
  14. D. Janzing and P. Wocjan. A Simple PromiseBQP-complete Matrix Problem. Theory of computing, 3(1):61-79, 2007. Google Scholar
  15. J. Kempe, A. Kitaev, and O. Regev. The complexity of the local Hamiltonian problem. SIAM Journal on Computing, 35(5):1070-1097, 2006. Google Scholar
  16. A. Kitaev, A. Shen, and M. Vyalyi. Classical and quantum computation, volume 47. American Mathematical Society Providence, 2002. Google Scholar
  17. E. Knill and R. Laflamme. Power of one bit of quantum information. Physical Review Letters, 81(25):5672, 1998. arXiv:quant-ph/9802037. Google Scholar
  18. E. Knill and R. Laflamme. Quantum computing and quadratically signed weight enumerators. Information Processing Letters, 79(4):173-179, 2001. arXiv:quant-ph/9909094. Google Scholar
  19. X. Li, Y. Shi, and I. Gutman. Graph energy. Springer Science &Business Media, 2012. Google Scholar
  20. S. Lloyd. Universal quantum simulators. Science, 273(5278):1073, 1996. quant-ph/9703054. Google Scholar
  21. T. Morimae. Hardness of classically sampling one clean qubit model with constant total variation distance error. arXiv:1704.03640, 2017. Google Scholar
  22. T. Morimae, K. Fujii, and Joseph F. Fitzsimons. Hardness of classically simulating the one-clean-qubit model. Physical review letters, 112(13):130502, 2014. arXiv:1312.2496. Google Scholar
  23. M. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge university press, 2010. Google Scholar
  24. D. Perez-Garcia, M. Wolf, D. Petz, and M. Ruskai. Contractivity of positive and trace-preserving maps under L_p norms. Journal of Mathematical Physics, 47(8):083506, 2006. arXiv:math-ph/0601063. Google Scholar
  25. D. Shepherd. Computation with unitaries and one pure qubit. arXiv:quant-ph/0608132, 2006. Google Scholar
  26. P. Shor and S. Jordan. Estimating Jones polynomials is a complete problem for one clean qubit. Quantum Information &Computation, 8(8):681-714, 2008. arXiv:0707.2831. Google Scholar
  27. J. Watrous. Quantum computational complexity. In Encyclopedia of complexity and systems science, pages 7174-7201. Springer, 2009. arXiv:0804.3401. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail