LIPIcs.APPROX-RANDOM.2018.30.pdf
- Filesize: 445 kB
- 15 pages
Let F be a finite alphabet and D be a finite set of distributions over F. A Generalized Santha-Vazirani (GSV) source of type (F, D), introduced by Beigi, Etesami and Gohari (ICALP 2015, SICOMP 2017), is a random sequence (F_1, ..., F_n) in F^n, where F_i is a sample from some distribution d in D whose choice may depend on F_1, ..., F_{i-1}. We show that all GSV source types (F, D) fall into one of three categories: (1) non-extractable; (2) extractable with error n^{-Theta(1)}; (3) extractable with error 2^{-Omega(n)}. We provide essentially randomness-optimal extraction algorithms for extractable sources. Our algorithm for category (2) sources extracts one bit with error epsilon from n = poly(1/epsilon) samples in time linear in n. Our algorithm for category (3) sources extracts m bits with error epsilon from n = O(m + log 1/epsilon) samples in time min{O(m2^m * n),n^{O(|F|)}}. We also give algorithms for classifying a GSV source type (F, D): Membership in category (1) can be decided in NP, while membership in category (3) is polynomial-time decidable.
Feedback for Dagstuhl Publishing