LIPIcs.CONCUR.2018.6.pdf
- Filesize: 456 kB
- 15 pages
A timed network consists of an arbitrary number of initially identical 1-clock timed automata, interacting via hand-shake communication. In this setting there is no unique central controller, since all automata are initially identical. We consider the universal safety problem for such controller-less timed networks, i.e., verifying that a bad event (enabling some given transition) is impossible regardless of the size of the network. This universal safety problem is dual to the existential coverability problem for timed-arc Petri nets, i.e., does there exist a number m of tokens, such that starting with m tokens in a given place, and none in the other places, some given transition is eventually enabled. We show that these problems are PSPACE-complete.
Feedback for Dagstuhl Publishing