LIPIcs.MFCS.2018.24.pdf
- Filesize: 0.55 MB
- 16 pages
The Consensus-halving problem is the problem of dividing an object into two portions, such that each of n agents has equal valuation for the two portions. We study the epsilon-approximate version, which allows each agent to have an epsilon discrepancy on the values of the portions. It was recently proven in [Filos-Ratsikas and Goldberg, 2018] that the problem of computing an epsilon-approximate Consensus-halving solution (for n agents and n cuts) is PPA-complete when epsilon is inverse-exponential. In this paper, we prove that when epsilon is constant, the problem is PPAD-hard and the problem remains PPAD-hard when we allow a constant number of additional cuts. Additionally, we prove that deciding whether a solution with n-1 cuts exists for the problem is NP-hard.
Feedback for Dagstuhl Publishing