pdf-format: |
|
@InProceedings{bezem_et_al:LIPIcs:2018:9854, author = {Marc Bezem and Thierry Coquand and Keiko Nakata and Erik Parmann}, title = {{Realizability at Work: Separating Two Constructive Notions of Finiteness}}, booktitle = {22nd International Conference on Types for Proofs and Programs (TYPES 2016)}, pages = {6:1--6:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-065-1}, ISSN = {1868-8969}, year = {2018}, volume = {97}, editor = {Silvia Ghilezan and Herman Geuvers and Jelena Ivetić}, publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik}, address = {Dagstuhl, Germany}, URL = {http://drops.dagstuhl.de/opus/volltexte/2018/9854}, URN = {urn:nbn:de:0030-drops-98541}, doi = {10.4230/LIPIcs.TYPES.2016.6}, annote = {Keywords: Type theory, realizability, constructive notions of finiteness} }
Keywords: | Type theory, realizability, constructive notions of finiteness | |
Seminar: | 22nd International Conference on Types for Proofs and Programs (TYPES 2016) | |
Issue date: | 2018 | |
Date of publication: | 05.11.2018 |