LIPIcs.TYPES.2016.7.pdf
- Filesize: 453 kB
- 14 pages
It is known that one can construct non-parametric functions by assuming classical axioms. Our work is a converse to that: we prove classical axioms in dependent type theory assuming specific instances of non-parametricity. We also address the interaction between classical axioms and the existence of automorphisms of a type universe. We work over intensional Martin-Löf dependent type theory, and for some results assume further principles including function extensionality, propositional extensionality, propositional truncation, and the univalence axiom.
Feedback for Dagstuhl Publishing