Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

Authors Ramprasad Saptharishi, Anamay Tengse



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2018.6.pdf
  • Filesize: 0.52 MB
  • 19 pages

Document Identifiers

Author Details

Ramprasad Saptharishi
  • Tata Institute of Fundamental Research, Mumbai, India
Anamay Tengse
  • Tata Institute of Fundamental Research, Mumbai, India

Cite As Get BibTex

Ramprasad Saptharishi and Anamay Tengse. Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.FSTTCS.2018.6

Abstract

We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) circuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by Lagarde, Malod and Perifel [Guillaume Lagarde et al., 2016] and Lagarde, Limaye and Srinivasan [Guillaume Lagarde et al., 2017]) and give the following constructions: 
- An explicit hitting set of quasipolynomial size for UPT circuits, 
- An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly many parse tree shapes), 
- An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when a parameter of preimage-width is bounded by a constant. 
 The above three results are extensions of the results of [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016] to the setting of UPT circuits, and hence also generalize their results in the commutative world from read-once oblivious algebraic branching programs (ROABPs) to UPT-set-multilinear circuits.
The main idea is to study shufflings of non-commutative polynomials, which can then be used to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation of the ideas in [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016].

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
  • Theory of computation → Complexity classes
Keywords
  • Unambiguous Circuits
  • Read-once Oblivious ABPs
  • Polynomial Identity Testing
  • Lower Bounds
  • Algebraic Circuit Complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In Proceedings of the \nth\intcalcSub20051980 International Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2005), pages 92-105, 2005. URL: http://dx.doi.org/10.1007/11590156_6.
  2. Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-Sets for ROABP and Sum of Set-Multilinear Circuits. SIAM Journal of Computing, 44(3):669-697, 2015. URL: http://dx.doi.org/10.1137/140975103.
  3. Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for set-depth-Δ formulas. In Proceedings of the \nth\intcalcSub20131968 Annual ACM Symposium on Theory of Computing (STOC 2013), pages 321-330, 2013. http://eccc.hpi-web.de/report/\ifnumcomp12>93192012/113/. URL: http://dx.doi.org/10.1145/2488608.2488649.
  4. Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds. Theoretical Computer Science, 209(1-2):47-86, 1998. URL: http://dx.doi.org/10.1016/S0304-3975(97)00227-2.
  5. Vikraman Arvind and S. Raja. Some Lower Bound Results for Set-Multilinear Arithmetic Computations. Chicago Journal of Theoretical Computer Science, 2016. URL: http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html.
  6. Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theoretical Computer Science, 22:317-330, 1983. URL: http://dx.doi.org/10.1016/0304-3975(83)90110-X.
  7. Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Program Testing. Information Processing Letters, 7(4):193-195, 1978. URL: http://dx.doi.org/10.1016/0020-0190(78)90067-4.
  8. Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In Proceedings of the \ifnumcomp2013<1966\nth\intcalcSub20131959 Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 2013)\ifnumcomp2013<1975\nth\intcalcSub20131959 Annual Symposium on Switching and Automata Theory (SWAT 2013)\nth\intcalcSub20131959 Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages 243-252, 2013. Full version at http://arxiv.org/abs/1209.2408. URL: http://dx.doi.org/10.1109/FOCS.2013.34.
  9. Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width, and Commutative, Read-Once Oblivious ABPs. In Proceedings of the \ifnumcomp2016<1996\nth\intcalcSub20161985 Annual Structure in Complexity Theory Conference (Structures 2016)\ifnumcomp2016<2015\nth\intcalcSub20161985 Annual IEEE Conference on Computational Complexity (CCC 2016)\nth\intcalcSub20161985 Annual Computational Complexity Conference (CCC 2016), pages 29:1-29:16, 2016. http://arxiv.org/abs/1601.08031. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29.
  10. Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Identity Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. In Proceedings of the \ifnumcomp2015<1996\nth\intcalcSub20151985 Annual Structure in Complexity Theory Conference (Structures 2015)\ifnumcomp2015<2015\nth\intcalcSub20151985 Annual IEEE Conference on Computational Complexity (CCC 2015)\nth\intcalcSub20151985 Annual Computational Complexity Conference (CCC 2015), pages 323-346, 2015. http://arxiv.org/abs/1411.7341. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323.
  11. Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy to Compute (Extended Abstract). In Proceedings of the \nth\intcalcSub19801968 Annual ACM Symposium on Theory of Computing (STOC 1980), pages 262-272, 1980. URL: http://dx.doi.org/10.1145/800141.804674.
  12. Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the sum-of-squares problem. In Proceedings of the \nth\intcalcSub20101968 Annual ACM Symposium on Theory of Computing (STOC 2010), pages 667-676, 2010. URL: http://dx.doi.org/10.1145/1806689.1806781.
  13. Pavel Hrubeš and Amir Yehudayoff. On Isoperimetric Profiles and Computational Complexity. In Proceedings of the \nth\intcalcSub20161973 International Colloquium on Automata, Languages and Programming (ICALP 2016), pages 89:1-89:12, 2016. http://eccc.hpi-web.de/report/\ifnumcomp15>93192015/164/. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.89.
  14. Laurent Hyafil. On the Parallel Evaluation of Multivariate Polynomials. SIAM Journal of Computing, 8(2):120-123, 1979. Preliminary version in the \nth\intcalcSub19781968 Annual ACM Symposium on Theory of Computing (STOC 1978). URL: http://dx.doi.org/10.1137/0208010.
  15. Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1-2):1-46, 2004. Preliminary version in the \nth\intcalcSub20031968 Annual ACM Symposium on Theory of Computing (STOC 2003). URL: http://dx.doi.org/10.1007/s00037-004-0182-6.
  16. Adam R. Klivans and Amir Shpilka. Learning Restricted Models of Arithmetic Circuits. Theory of Computing, 2(10):185-206, 2006. Preliminary version in the \nth\intcalcSub20031987 Annual Conference on Computational Learning Theory (COLT 2003). URL: http://dx.doi.org/10.4086/toc.2006.v002a010.
  17. Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower Bounds and PIT for Non-Commutative Arithmetic circuits with Restricted Parse Trees. Electronic Colloquium on Computational Complexity (ECCC), 24:77, 2017. http://eccc.hpi-web.de/report/\ifnumcomp17>93192017/077/. URL: https://eccc.weizmann.ac.il/report/2017/077.
  18. Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computations: lower bounds and polynomial identity testing. Electronic Colloquium on Computational Complexity (ECCC), 23:94, 2016. URL: http://eccc.hpi-web.de/report/2016/094.
  19. Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower Bounds for Non-Commutative Skew Circuits. Theory of Computing, 12(1):1-38, 2016. http://eccc.hpi-web.de/report/\ifnumcomp15>93192015/22/. URL: http://dx.doi.org/10.4086/toc.2016.v012a012.
  20. Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the \nth\intcalcSub19911968 Annual ACM Symposium on Theory of Computing (STOC 1991), pages 410-418, 1991. Available on http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.5067. URL: http://dx.doi.org/10.1145/103418.103462.
  21. Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449-461, 1992. URL: http://dx.doi.org/10.1007/BF01305237.
  22. Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922. Google Scholar
  23. Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models. Computational Complexity, 14(1):1-19, 2005. Preliminary version in the \ifnumcomp2004<1996\nth\intcalcSub20041985 Annual Structure in Complexity Theory Conference (Structures 2004)\ifnumcomp2004<2015\nth\intcalcSub20041985 Annual IEEE Conference on Computational Complexity (CCC 2004)\nth\intcalcSub20041985 Annual Computational Complexity Conference (CCC 2004). URL: http://dx.doi.org/10.1007/s00037-005-0188-8.
  24. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. Journal of the ACM, 27(4):701-717, 1980. URL: http://dx.doi.org/10.1145/322217.322225.
  25. Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Computational Complexity, 24(3):477-532, 2015. Preliminary version in the \nth\intcalcSub20081968 Annual ACM Symposium on Theory of Computing (STOC 2008). URL: http://dx.doi.org/10.1007/s00037-015-0105-8.
  26. Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the \nth\intcalcSub19791968 Annual ACM Symposium on Theory of Computing (STOC 1979), pages 249-261, 1979. URL: http://dx.doi.org/10.1145/800135.804419.
  27. Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Computation of Polynomials Using Few Processors. SIAM Journal of Computing, 12(4):641-644, 1983. Preliminary version in the \nth\intcalcSub19811975 Internationl Symposium on the Mathematical Foundations of Computer Science (MFCS 1981). URL: http://dx.doi.org/10.1137/0212043.
  28. Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic Computation, EUROSAM '79, An International Symposiumon Symbolic and Algebraic Computation, volume 72 of Lecture Notes in Computer Science, pages 216-226. Springer, 1979. URL: http://dx.doi.org/10.1007/3-540-09519-5_73.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail