Creative Commons Attribution 3.0 Unported license
We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) circuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by Lagarde, Malod and Perifel [Guillaume Lagarde et al., 2016] and Lagarde, Limaye and Srinivasan [Guillaume Lagarde et al., 2017]) and give the following constructions: - An explicit hitting set of quasipolynomial size for UPT circuits, - An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly many parse tree shapes), - An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when a parameter of preimage-width is bounded by a constant. The above three results are extensions of the results of [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016] to the setting of UPT circuits, and hence also generalize their results in the commutative world from read-once oblivious algebraic branching programs (ROABPs) to UPT-set-multilinear circuits. The main idea is to study shufflings of non-commutative polynomials, which can then be used to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation of the ideas in [Manindra Agrawal et al., 2015], [Rohit Gurjar et al., 2015] and [Rohit Gurjar et al., 2016].
@InProceedings{saptharishi_et_al:LIPIcs.FSTTCS.2018.6,
author = {Saptharishi, Ramprasad and Tengse, Anamay},
title = {{Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees}},
booktitle = {38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
pages = {6:1--6:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-093-4},
ISSN = {1868-8969},
year = {2018},
volume = {122},
editor = {Ganguly, Sumit and Pandya, Paritosh},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.6},
URN = {urn:nbn:de:0030-drops-99050},
doi = {10.4230/LIPIcs.FSTTCS.2018.6},
annote = {Keywords: Unambiguous Circuits, Read-once Oblivious ABPs, Polynomial Identity Testing, Lower Bounds, Algebraic Circuit Complexity}
}