LIPIcs.FSTTCS.2018.14.pdf
- Filesize: 0.53 MB
- 15 pages
Asada and Kobayashi [ICALP 2017] conjectured a higher-order version of Kruskal's tree theorem, and proved a pumping lemma for higher-order languages modulo the conjecture. The conjecture has been proved up to order-2, which implies that Asada and Kobayashi's pumping lemma holds for order-2 tree languages, but remains open for order-3 or higher. In this paper, we prove a variation of the conjecture for order-3. This is sufficient for proving that a variation of the pumping lemma holds for order-3 tree languages (equivalently, for order-4 word languages).
Feedback for Dagstuhl Publishing