LIPIcs.ISAAC.2018.36.pdf
- Filesize: 0.55 MB
- 13 pages
Betweenness centrality - measuring how many shortest paths pass through a vertex - is one of the most important network analysis concepts for assessing the relative importance of a vertex. The well-known algorithm of Brandes [2001] computes, on an n-vertex and m-edge graph, the betweenness centrality of all vertices in O(nm) worst-case time. In follow-up work, significant empirical speedups were achieved by preprocessing degree-one vertices and by graph partitioning based on cut vertices. We further contribute an algorithmic treatment of degree-two vertices, which turns out to be much richer in mathematical structure than the case of degree-one vertices. Based on these three algorithmic ingredients, we provide a strengthened worst-case running time analysis for betweenness centrality algorithms. More specifically, we prove an adaptive running time bound O(kn), where k < m is the size of a minimum feedback edge set of the input graph.
Feedback for Dagstuhl Publishing