Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Mohasseb, Alaa; Bader-El-Den, Mohamed; Cocea, Mihaela https://www.dagstuhl.de/oasics License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-101866
URL:

; ;

Towards Context-Aware Syntax Parsing and Tagging

pdf-format:


Abstract

Information retrieval (IR) has become one of the most popular Natural Language Processing (NLP) applications. Part of speech (PoS) parsing and tagging plays an important role in IR systems. A broad range of PoS parsers and taggers tools have been proposed with the aim of helping to find a solution for the information retrieval problems, but most of these are tools based on generic NLP tags which do not capture domain-related information. In this research, we present a domain-specific parsing and tagging approach that uses not only generic PoS tags but also domain-specific PoS tags, grammatical rules, and domain knowledge. Experimental results show that our approach has a good level of accuracy when applying it to different domains.

BibTeX - Entry

@InProceedings{mohasseb_et_al:OASIcs:2019:10186,
  author =	{Alaa Mohasseb and Mohamed Bader-El-Den and Mihaela Cocea},
  title =	{{Towards Context-Aware Syntax Parsing and Tagging}},
  booktitle =	{2018 Imperial College Computing Student Workshop (ICCSW 2018)},
  pages =	{5:1--5:9},
  series =	{OpenAccess Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-097-2},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{66},
  editor =	{Edoardo Pirovano and Eva Graversen},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10186},
  URN =		{urn:nbn:de:0030-drops-101866},
  doi =		{10.4230/OASIcs.ICCSW.2018.5},
  annote =	{Keywords: Information Retrieval, Natural Language Processing, PoS Tagging, PoS Parsing, Machine Learning}
}

Keywords: Information Retrieval, Natural Language Processing, PoS Tagging, PoS Parsing, Machine Learning
Seminar: 2018 Imperial College Computing Student Workshop (ICCSW 2018)
Issue date: 2019
Date of publication: 25.01.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI