Enumerating Minimal Dominating Sets in Triangle-Free Graphs

Authors Marthe Bonamy, Oscar Defrain, Marc Heinrich, Jean-Florent Raymond



PDF
Thumbnail PDF

File

LIPIcs.STACS.2019.16.pdf
  • Filesize: 0.51 MB
  • 12 pages

Document Identifiers

Author Details

Marthe Bonamy
  • CNRS, Université de Bordeaux, France
Oscar Defrain
  • LIMOS, Université Clermont Auvergne, France
Marc Heinrich
  • LIRIS, Université Claude-Bernard, Lyon, France
Jean-Florent Raymond
  • LaS team, Technische Universität Berlin, Germany

Acknowledgements

The authors wish to thank Paul Ouvrard for extensive discussions on the topic of this paper. We also gratefully acknowledge support from Nicolas Bonichon and the Simon family for the organization of the 3^{rd} Pessac Graph Workshop, where this research was done. Last but not least, we thank Peppie for her unwavering support during the work sessions.

Cite As Get BibTex

Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond. Enumerating Minimal Dominating Sets in Triangle-Free Graphs. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 16:1-16:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.STACS.2019.16

Abstract

It is a long-standing open problem whether the minimal dominating sets of a graph can be enumerated in output-polynomial time. In this paper we prove that this is the case in triangle-free graphs. This answers a question of Kanté et al. Additionally, we show that deciding if a set of vertices of a bipartite graph can be completed into a minimal dominating set is a NP-complete problem.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Enumeration algorithms
  • output-polynomial algorithms
  • minimal dominating set
  • triangle-free graphs
  • split graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eralp Abdurrahim Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM Journal on Computing, 2(1):1-6, 1973. Google Scholar
  2. John M. Barnard. Substructure searching methods: Old and new. Journal of Chemical Information and Computer Sciences, 33(4):532-538, 1993. Google Scholar
  3. Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters, 32(6):547-556, 2004. Google Scholar
  4. Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied Mathematics, 157(12):2675-2700, 2009. Google Scholar
  5. Peter Damaschke. Parameterized Enumeration, Transversals, and Imperfect Phylogeny Reconstruction. In Rod Downey, Michael Fellows, and Frank Dehne, editors, Parameterized and Exact Computation, pages 1-12, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. Google Scholar
  6. Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and related problems in logic and AI. In European Workshop on Logics in Artificial Intelligence, pages 549-564. Springer, 2002. Google Scholar
  7. Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone dualization and generating hypergraph transversals. SIAM Journal on Computing, 32(2):514-537, 2003. URL: https://arxiv.org/abs/cs/0204009.
  8. Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational aspects of monotone dualization: A brief survey. Discrete Applied Mathematics, 156(11):2035-2049, 2008. Google Scholar
  9. Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms, 21(3):618-628, 1996. Google Scholar
  10. Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch, Sigve H. Sæther, and Yngve Villanger. Output-Polynomial Enumeration on Graphs of Bounded (Local) Linear MIM-Width. Algorithmica, 80(2):714-741, February 2018. https://arxiv.org/abs/1509.03753. URL: http://dx.doi.org/10.1007/s00453-017-0289-1.
  11. Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter Kratsch, and Yngve Villanger. Enumerating minimal dominating sets in chordal bipartite graphs. Discrete Applied Mathematics, 199:30-36, 2016. Special Issue: Sixth Workshop on Graph Classes, Optimization, and Width Parameters 2013. URL: http://dx.doi.org/10.1016/j.dam.2014.12.010.
  12. Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Yngve Villanger. An Incremental Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets. Algorithmica, 72(3):836-859, July 2015. URL: http://dx.doi.org/10.1007/s00453-014-9875-7.
  13. Joshua A. Grochow and Manolis Kellis. Network motif discovery using subgraph enumeration and symmetry-breaking. In Annual International Conference on Research in Computational Molecular Biology, pages 92-106. Springer, 2007. Google Scholar
  14. Mihály Hujtera and Zsolt Tuza. The Number of Maximal Independent Sets in Triangle-Free Graphs. SIAM Journal on Discrete Mathematics, 6(2):284-288, 1993. URL: http://dx.doi.org/10.1137/0406022.
  15. Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. Enumeration of minimal dominating sets and variants. In International Symposium on Fundamentals of Computation Theory, pages 298-309. Springer, 2011. URL: https://arxiv.org/abs/1407.2053.
  16. Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the neighbourhood helly of some graph classes and applications to the enumeration of minimal dominating sets. In International Symposium on Algorithms and Computation, pages 289-298. Springer, 2012. Google Scholar
  17. Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the Enumeration of Minimal Dominating Sets and Related Notions. SIAM Journal on Discrete Mathematics, 28(4):1916-1929, 2014. URL: https://arxiv.org/abs/1407.2053.
  18. Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki Uno. On the enumeration and counting of minimal dominating sets in interval and permutation graphs. In International Symposium on Algorithms and Computation, pages 339-349. Springer, 2013. Google Scholar
  19. Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki Uno. A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 138-153. Springer, 2015. URL: https://arxiv.org/abs/1407.2036.
  20. Mamadou Moustapha Kanté and Lhouari Nourine. Minimal Dominating Set Enumeration. In Ming-Yang Kao, editor, Encyclopedia of Algorithms, pages 1-5. Springer US, Boston, MA, 2014. URL: http://dx.doi.org/10.1007/978-3-642-27848-8_721-1.
  21. M. P. Marcus. Derivation of Maximal Compatibles Using Boolean Algebra. IBM Journal of Research and Development, 8(5):537-538, November 1964. URL: http://dx.doi.org/10.1147/rd.85.0537.
  22. Andrea Marino. An Application: Biological Graph Analysis. In Analysis and Enumeration: Algorithms for Biological Graphs, pages 37-44. Atlantis Press, Paris, 2015. URL: http://dx.doi.org/10.2991/978-94-6239-097-3_3.
  23. Andrea Marino. Enumeration Algorithms. In Analysis and Enumeration: Algorithms for Biological Graphs, pages 13-35. Atlantis Press, Paris, 2015. URL: http://dx.doi.org/10.2991/978-94-6239-097-3_2.
  24. M. C. Paull and S. H. Unger. Minimizing the Number of States in Incompletely Specified Sequential Switching Functions. IRE Transactions on Electronic Computers, EC-8(3):356-367, September 1959. URL: http://dx.doi.org/10.1109/TEC.1959.5222697.
  25. Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Paris 7, 2010. Google Scholar
  26. Robert Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM Journal on Computing, 2(3):211-216, 1973. Google Scholar
  27. James C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph. Communications of the ACM, 13(12):722-726, 1970. Google Scholar
  28. Kunihiro Wasa. Enumeration of enumeration algorithms. Preprint https://arxiv.org/abs/1605.05102, 2016. See also https://kunihirowasa.github.io/enum/index (accessed on September 2018).
  29. Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph databases. In Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 766-777. ACM, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail