LIPIcs.STACS.2019.40.pdf
- Filesize: 0.65 MB
- 16 pages
Subshifts are sets of colorings of Z^d by a finite alphabet that avoid some family of forbidden patterns. We investigate here some analogies with group theory that were first noticed by the first author. In particular we prove several theorems on subshifts inspired by Higman’s embedding theorems of group theory, among which, the fact that subshifts with a computable language can be obtained as restrictions of minimal subshifts of finite type.
Feedback for Dagstuhl Publishing