LIPIcs.ICALP.2019.98.pdf
- Filesize: 0.5 MB
- 13 pages
Locally recoverable codes are a class of block codes with an additional property called locality. A locally recoverable code with locality r can recover a symbol by reading at most r other symbols. Recently, it was discovered by several authors that a q-ary optimal locally recoverable code, i.e., a locally recoverable code achieving the Singleton-type bound, can have length much bigger than q+1. In this paper, we present both the upper bound and the lower bound on the length of optimal locally recoverable codes. Our lower bound improves the best known result in [Yuan Luo et al., 2018] for all distance d >= 7. This result is built on the observation of the parity-check matrix equipped with the Vandermonde structure. It turns out that a parity-check matrix with the Vandermonde structure produces an optimal locally recoverable code if it satisfies a certain expansion property for subsets of F_q. To our surprise, this expansion property is then shown to be equivalent to a well-studied problem in extremal graph theory. Our upper bound is derived by an refined analysis of the arguments of Theorem 3.3 in [Venkatesan Guruswami et al., 2018].
Feedback for Dagstuhl Publishing