LIPIcs.ICALP.2019.117.pdf
- Filesize: 0.64 MB
- 15 pages
The Weisfeiler-Leman (WL) dimension of a graph is a measure for the inherent descriptive complexity of the graph. While originally derived from a combinatorial graph isomorphism test called the Weisfeiler-Leman algorithm, the WL dimension can also be characterised in terms of the number of variables that is required to describe the graph up to isomorphism in first-order logic with counting quantifiers. It is known that the WL dimension is upper-bounded for all graphs that exclude some fixed graph as a minor [M. Grohe, 2017]. However, the bounds that can be derived from this general result are astronomic. Only recently, it was proved that the WL dimension of planar graphs is at most 3 [S. Kiefer et al., 2017]. In this paper, we prove that the WL dimension of graphs embeddable in a surface of Euler genus g is at most 4g+3. For the WL dimension of graphs embeddable in an orientable surface of Euler genus g, our approach yields an upper bound of 2g + 3.
Feedback for Dagstuhl Publishing