LIPIcs.ECRTS.2019.25.pdf
- Filesize: 0.88 MB
- 24 pages
Multi-core systems using ScratchPad Memories (SPMs) are attractive architectures for executing time-critical embedded applications, because they provide both predictability and performance. In this paper, we propose a scheduling technique that jointly selects SPM contents off-line, in such a way that the cost of SPM loading/unloading is hidden. Communications are fragmented to augment hiding possibilities. Experimental results show the effectiveness of the proposed technique on streaming applications and synthetic task-graphs. The overlapping of communications with computations allows the length of generated schedules to be reduced by 4% on average on streaming applications, with a maximum of 16%, and by 8% on average for synthetic task graphs. We further show on a case study that generated schedules can be implemented with low overhead on a predictable multi-core architecture (Kalray MPPA).
Feedback for Dagstuhl Publishing