LIPIcs.CCC.2019.7.pdf
- Filesize: 0.59 MB
- 25 pages
We study the Fourier spectrum of functions f : {0,1}^{mk} -> {-1,0,1} which can be written as a product of k Boolean functions f_i on disjoint m-bit inputs. We prove that for every positive integer d, sum_{S subseteq [mk]: |S|=d} |hat{f_S}| = O(min{m, sqrt{m log(2k)}})^d . Our upper bounds are tight up to a constant factor in the O(*). Our proof uses Schur-convexity, and builds on a new "level-d inequality" that bounds above sum_{|S|=d} hat{f_S}^2 for any [0,1]-valued function f in terms of its expectation, which may be of independent interest. As a result, we construct pseudorandom generators for such functions with seed length O~(m + log(k/epsilon)), which is optimal up to polynomial factors in log m, log log k and log log(1/epsilon). Our generator in particular works for the well-studied class of combinatorial rectangles, where in addition we allow the bits to be read in any order. Even for this special case, previous generators have an extra O~(log(1/epsilon)) factor in their seed lengths. We also extend our results to functions f_i whose range is [-1,1].
Feedback for Dagstuhl Publishing