Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time (Invited Talk)

Author Alexandra Silva



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2019.2.pdf
  • Filesize: 160 kB
  • 1 pages

Document Identifiers

Author Details

Alexandra Silva
  • University College London, UK

Cite As Get BibTex

Alexandra Silva. Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time (Invited Talk). In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.MFCS.2019.2

Abstract

Guarded Kleene Algebra with Tests (GKAT) is a variation on Kleene Algebra with Tests (KAT) that arises by restricting the union (+) and iteration (*) operations from KAT to predicate-guarded versions. We develop the (co)algebraic theory of GKAT and show how it can be efficiently used to reason about imperative programs. In contrast to KAT, whose equational theory is PSPACE-complete, we show that the equational theory of GKAT is (almost) linear time. We also provide a full Kleene theorem and prove completeness for an analogue of Salomaa’s axiomatization of Kleene Algebra. We will also discuss how this result has practical implications in the verification of programs, with examples from network and probabilistic programming. This is joint work with Nate Foster, Justin Hsu, Tobias Kappe, Dexter Kozen, and Steffen Smolka.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
Keywords
  • Kleene algebra
  • verification
  • decision procedures

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail