Creative Commons Attribution 3.0 Unported license
This paper introduces and studies a notion of algorithmic randomness for subgroups of rationals. Given a randomly generated additive subgroup (G,+) of rationals, two main questions are addressed: first, what are the model-theoretic and recursion-theoretic properties of (G,+); second, what learnability properties can one extract from G and its subclass of finitely generated subgroups? For the first question, it is shown that the theory of (G,+) coincides with that of the additive group of integers and is therefore decidable; furthermore, while the word problem for G with respect to any generating sequence for G is not even semi-decidable, one can build a generating sequence beta such that the word problem for G with respect to beta is co-recursively enumerable (assuming that the set of generators of G is limit-recursive). In regard to the second question, it is proven that there is a generating sequence beta for G such that every non-trivial finitely generated subgroup of G is recursively enumerable and the class of all such subgroups of G is behaviourally correctly learnable, that is, every non-trivial finitely generated subgroup can be semantically identified in the limit (again assuming that the set of generators of G is limit-recursive). On the other hand, the class of non-trivial finitely generated subgroups of G cannot be syntactically identified in the limit with respect to any generating sequence for G. The present work thus contributes to a recent line of research studying algorithmically random infinite structures and uncovers an interesting connection between the arithmetical complexity of the set of generators of a randomly generated subgroup of rationals and the learnability of its finitely generated subgroups.
@InProceedings{gao_et_al:LIPIcs.MFCS.2019.25,
author = {Gao, Ziyuan and Jain, Sanjay and Khoussainov, Bakhadyr and Li, Wei and Melnikov, Alexander and Seidel, Karen and Stephan, Frank},
title = {{Random Subgroups of Rationals}},
booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
pages = {25:1--25:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-117-7},
ISSN = {1868-8969},
year = {2019},
volume = {138},
editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.25},
URN = {urn:nbn:de:0030-drops-109693},
doi = {10.4230/LIPIcs.MFCS.2019.25},
annote = {Keywords: Martin-L\"{o}f randomness, subgroups of rationals, finitely generated subgroups of rationals, learning in the limit, behaviourally correct learning}
}